defone_step_attention(a, s_prev): """ Performs one step of attention: Outputs a context vector computed as a dot product of the attention weights "alphas" and the hidden states "a" of the Bi-LSTM. Arguments: a -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx, 2*n_a) s_prev -- previous hidden state of the (post-attention) LSTM, numpy-array of shape (m, n_s) Returns: context -- context vector, input of the next (post-attetion) LSTM cell """ ### START CODE HERE ### # Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can concatenate it with all hidden states "a" (≈ 1 line) s_prev = repeator(s_prev) # Use concatenator to concatenate a and s_prev on the last axis (≈ 1 line) concat = concatenator([a, s_prev]) # Use densor1 to propagate concat through a small fully-connected neural network to compute the "intermediate energies" variable e. (≈1 lines) e = densor1(concat) # Use densor2 to propagate e through a small fully-connected neural network to compute the "energies" variable energies. (≈1 lines) energies = densor2(e) # Use "activator" on "energies" to compute the attention weights "alphas" (≈ 1 line) alphas = activator(energies) # Use dotor together with "alphas" and "a" to compute the context vector to be given to the next (post-attention) LSTM-cell (≈ 1 line) context = dotor([alphas, a]) ### END CODE HERE ### return context
defmodel(Tx, Ty, n_a, n_s, human_vocab_size, machine_vocab_size): """ Arguments: Tx -- length of the input sequence Ty -- length of the output sequence n_a -- hidden state size of the Bi-LSTM n_s -- hidden state size of the post-attention LSTM human_vocab_size -- size of the python dictionary "human_vocab" machine_vocab_size -- size of the python dictionary "machine_vocab" Returns: model -- Keras model instance """ # Define the inputs of your model with a shape (Tx,) # Define s0 and c0, initial hidden state for the decoder LSTM of shape (n_s,) X = Input(shape=(Tx, human_vocab_size)) s0 = Input(shape=(n_s,), name='s0') c0 = Input(shape=(n_s,), name='c0') s = s0 c = c0 # Initialize empty list of outputs outputs = [] ### START CODE HERE ### # Step 1: Define your pre-attention Bi-LSTM. Remember to use return_sequences=True. (≈ 1 line) a = Bidirectional(LSTM(n_a, return_sequences=True))(X) # Step 2: Iterate for Ty steps for t in range(Ty): # Step 2.A: Perform one step of the attention mechanism to get back the context vector at step t (≈ 1 line) context = one_step_attention(a ,s) # Step 2.B: Apply the post-attention LSTM cell to the "context" vector. # Don't forget to pass: initial_state = [hidden state, cell state] (≈ 1 line) s, _, c = post_activation_LSTM_cell(context, initial_state=[s, c]) # Step 2.C: Apply Dense layer to the hidden state output of the post-attention LSTM (≈ 1 line) out = output_layer(s) # Step 2.D: Append "out" to the "outputs" list (≈ 1 line) outputs.append(out) # Step 3: Create model instance taking three inputs and returning the list of outputs. (≈ 1 line) model = Model(inputs=[X,s0,c0], outputs=outputs) ### END CODE HERE ### return model
Part2:Trigger Word Detection
做触发关键字的检测。
X: 这里把每一段音频分为了10s,而10s内细分为了5511个小的片段,也就是Tx = 5511
Y: Ty = 1375,每个y都是一个布尔值,用来记录有没有收到触发关键字。
生成一个训练示例
这里把样本分为了三种,背景音乐,正向的音频,反向的音频,合成训练示例:
随机选择一个10秒的背景音频剪辑
随机将0-4个正向音频片段插入此10秒剪辑中
随机将0-2个反向音频片段插入此10秒剪辑中
合成后类似这样:
定义一个随机插入片段起始和终点位置的函数:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
defget_random_time_segment(segment_ms): """ Gets a random time segment of duration segment_ms in a 10,000 ms audio clip. Arguments: segment_ms -- the duration of the audio clip in ms ("ms" stands for "milliseconds") Returns: segment_time -- a tuple of (segment_start, segment_end) in ms """ segment_start = np.random.randint(low=0, high=10000-segment_ms) # Make sure segment doesn't run past the 10sec background segment_end = segment_start + segment_ms - 1 return (segment_start, segment_end)
defis_overlapping(segment_time, previous_segments): """ Checks if the time of a segment overlaps with the times of existing segments. Arguments: segment_time -- a tuple of (segment_start, segment_end) for the new segment previous_segments -- a list of tuples of (segment_start, segment_end) for the existing segments Returns: True if the time segment overlaps with any of the existing segments, False otherwise """ segment_start, segment_end = segment_time ### START CODE HERE ### (≈ 4 line) # Step 1: Initialize overlap as a "False" flag. (≈ 1 line) overlap = False # Step 2: loop over the previous_segments start and end times. # Compare start/end times and set the flag to True if there is an overlap (≈ 3 lines) for previous_start, previous_end in previous_segments: if segment_start <= previous_end and segment_end >= previous_start: overlap = True ### END CODE HERE ###
definsert_audio_clip(background, audio_clip, previous_segments): """ Insert a new audio segment over the background noise at a random time step, ensuring that the audio segment does not overlap with existing segments. Arguments: background -- a 10 second background audio recording. audio_clip -- the audio clip to be inserted/overlaid. previous_segments -- times where audio segments have already been placed Returns: new_background -- the updated background audio """ # Get the duration of the audio clip in ms segment_ms = len(audio_clip) ### START CODE HERE ### # Step 1: Use one of the helper functions to pick a random time segment onto which to insert # the new audio clip. (≈ 1 line) segment_time = get_random_time_segment(segment_ms) # Step 2: Check if the new segment_time overlaps with one of the previous_segments. If so, keep # picking new segment_time at random until it doesn't overlap. (≈ 2 lines) while is_overlapping(segment_time,previous_segments): segment_time = get_random_time_segment(segment_ms)
# Step 3: Add the new segment_time to the list of previous_segments (≈ 1 line) previous_segments.append(segment_time) ### END CODE HERE ### # Step 4: Superpose audio segment and background new_background = background.overlay(audio_clip, position = segment_time[0]) return new_background, segment_time
definsert_ones(y, segment_end_ms): """ Update the label vector y. The labels of the 50 output steps strictly after the end of the segment should be set to 1. By strictly we mean that the label of segment_end_y should be 0 while, the 50 followinf labels should be ones. Arguments: y -- numpy array of shape (1, Ty), the labels of the training example segment_end_ms -- the end time of the segment in ms Returns: y -- updated labels """ # duration of the background (in terms of spectrogram time-steps) segment_end_y = int(segment_end_ms * Ty / 10000.0) # Add 1 to the correct index in the background label (y) ### START CODE HERE ### (≈ 3 lines) for i in range(segment_end_y+1, segment_end_y+51): if i < Ty: y[0, i] = 1 ### END CODE HERE ### return y
defcreate_training_example(background, activates, negatives): """ Creates a training example with a given background, activates, and negatives. Arguments: background -- a 10 second background audio recording activates -- a list of audio segments of the word "activate" negatives -- a list of audio segments of random words that are not "activate" Returns: x -- the spectrogram of the training example y -- the label at each time step of the spectrogram """ # Set the random seed np.random.seed(18) # Make background quieter background = background - 20
### START CODE HERE ### # Step 1: Initialize y (label vector) of zeros (≈ 1 line) y = np.zeros((1, Ty))
# Step 2: Initialize segment times as empty list (≈ 1 line) previous_segments = [] ### END CODE HERE ### # Select 0-4 random "activate" audio clips from the entire list of "activates" recordings number_of_activates = np.random.randint(0, 5) random_indices = np.random.randint(len(activates), size=number_of_activates) random_activates = [activates[i] for i in random_indices] ### START CODE HERE ### (≈ 3 lines) # Step 3: Loop over randomly selected "activate" clips and insert in background for random_activate in random_activates: # Insert the audio clip on the background background, segment_time = insert_audio_clip(background, random_activate, previous_segments) # Retrieve segment_start and segment_end from segment_time segment_start, segment_end = segment_time # Insert labels in "y" y = insert_ones(y, segment_end) ### END CODE HERE ###
# Select 0-2 random negatives audio recordings from the entire list of "negatives" recordings number_of_negatives = np.random.randint(0, 3) random_indices = np.random.randint(len(negatives), size=number_of_negatives) random_negatives = [negatives[i] for i in random_indices]
### START CODE HERE ### (≈ 2 lines) # Step 4: Loop over randomly selected negative clips and insert in background for random_negative in random_negatives: # Insert the audio clip on the background background, _ = insert_audio_clip(background, random_negative, previous_segments) ### END CODE HERE ### # Standardize the volume of the audio clip background = match_target_amplitude(background, -20.0)
# Export new training example file_handle = background.export("train" + ".wav", format="wav") print("File (train.wav) was saved in your directory.") # Get and plot spectrogram of the new recording (background with superposition of positive and negatives) x = graph_spectrogram("train.wav") return x, y
defmodel(input_shape): """ Function creating the model's graph in Keras. Argument: input_shape -- shape of the model's input data (using Keras conventions) Returns: model -- Keras model instance """ X_input = Input(shape = input_shape) ### START CODE HERE ### # Step 1: CONV layer (≈4 lines) X = Conv1D(filters=196,kernel_size=15,strides=4)(X_input) # CONV1D X = BatchNormalization()(X) # Batch normalization X = Activation('relu')(X) # ReLu activation X = Dropout(0.8)(X) # dropout (use 0.8)
# Step 2: First GRU Layer (≈4 lines) X = GRU(units = 128, return_sequences = True)(X) # GRU (use 128 units and return the sequences) X = Dropout(0.8)(X) # dropout (use 0.8) X = BatchNormalization()(X) # Batch normalization # Step 3: Second GRU Layer (≈4 lines) X = GRU(units = 128, return_sequences = True)(X) # GRU (use 128 units and return the sequences) X = Dropout(0.8)(X) # dropout (use 0.8) X = BatchNormalization()(X) # Batch normalization X = Dropout(0.8)(X) # dropout (use 0.8) # Step 4: Time-distributed dense layer (≈1 line) X = TimeDistributed(Dense(1, activation = "sigmoid"))(X) # time distributed (sigmoid)
### END CODE HERE ###
model = Model(inputs = X_input, outputs = X) return model
这里载入预训练好的模型,不需要自己训练那么久了,
1 2 3 4
model = load_model('./models/tr_model.h5') opt = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=["accuracy"]) model.fit(X, Y, batch_size = 5, epochs=1)